

SAR EVALUATION REPORT

FCC 47 CFR § 2.1093 IEEE Std 1528-2013

For GSM Phone + Bluetooth & WLAN 2.4GHz b/g/n

FCC ID: A3LSMG361H Model Name: SM-G361H/DS and SM-G361H

> Report Number: 15K20822-S1A Issue Date: 5/29/2015

Prepared for SAMSUNG ELECTRONICS CO., LTD. 129 SAMSUNG-RO, YEONGTONG-GU, SUWON-SI, GYEONGGI-DO, 443-742, KOREA

Prepared by UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-823, Korea TEL: (031) 337-9902 FAX: (031) 213-5433

Revision History

Rev.	Date	Revisions	Revised By
	5/20/2015	Initial Issue	Justin Park
A	5/26/2015	 Sec 6.1., 6.2., 6.3. : Updated Table Updated Section 8.2. D835V2 Cal. Date Updated Section 9.1., 9.3. with the correct data Removed Section 10. KDB 941225 D05 SAR for LTE devices Updated Section 10.2., 10.3. with the correct data Updated Section 12. with the correct data 	Justin Park
В	5/29/2015	1. Sec 6.1., 6.3. : Updated Table	Justin Park

Table of Contents

1.	Attestation of Test Results	. 5
2.	Test Specification, Methods and Procedures	. 6
3.	Facilities and Accreditation	. 6
4.	SAR Measurement System & Test Equipment	. 7
4.1.	SAR Measurement System	. 7
4.2.	SAR Scan Procedures	. 8
4.3.	Test Equipment	10
5.	Measurement Uncertainty	10
6.	Device Under Test (DUT) Information	11
6.1.	DUT Description	11
6.2.	Wireless Technologies	11
6.3.	Nominal and Maximum Output Power	12
7.	RF Exposure Conditions (Test Configurations)	13
8.	Dielectric Property Measurements & System Check	14
8.1.	Dielectric Property Measurements	14
8.2.	System Check	16
0.2.	0,000	
9.	Conducted Output Power Measurements	
	Conducted Output Power Measurements	18
9.	Conducted Output Power Measurements	18 18
9. 9.1.	Conducted Output Power Measurements GSM Wi-Fi 2.4GHz (DTS Band)	18 18 19
9. 9.1. 9.2.	Conducted Output Power Measurements GSM Wi-Fi 2.4GHz (DTS Band)	18 18 19 19
9. 9.1. 9.2. 9.3.	Conducted Output Power Measurements GSM Wi-Fi 2.4GHz (DTS Band) Bluetooth Measured and Reported (Scaled) SAR Results	18 18 19 19 20
9. 9.1. 9.2. 9.3. 10.	Conducted Output Power Measurements GSM Wi-Fi 2.4GHz (DTS Band) Bluetooth Measured and Reported (Scaled) SAR Results	18 19 19 20 22
9. 9.1. 9.2. 9.3. 10.	Conducted Output Power Measurements GSM Wi-Fi 2.4GHz (DTS Band) Bluetooth Measured and Reported (Scaled) SAR Results	18 18 19 19 20 22 22
9. 9.1. 9.2. 9.3. 10. 10.2	Conducted Output Power Measurements. GSM GSM Wi-Fi 2.4GHz (DTS Band) Bluetooth Bluetooth Measured and Reported (Scaled) SAR Results 1 GSM850 2 GSM1900 3 Wi-Fi (DTS Band) 1	 18 19 19 20 22 22 23
9. 9.1. 9.2. 9.3. 10. 10.2 10.2	Conducted Output Power Measurements. GSM GSM Wi-Fi 2.4GHz (DTS Band) Bluetooth Bluetooth Measured and Reported (Scaled) SAR Results Sander Scaled) 1. GSM850 2. GSM1900 3. Wi-Fi (DTS Band)	 18 19 19 20 22 22 23 23
9. 9.1. 9.2. 9.3. 10. 10. 10.2 10.2	Conducted Output Power Measurements. GSM Wi-Fi 2.4GHz (DTS Band) Bluetooth Measured and Reported (Scaled) SAR Results 1. GSM850 2. GSM1900 3. Wi-Fi (DTS Band) 4. Bluetooth	 18 19 19 20 22 23 23 24
 9. 9.1. 9.2. 9.3. 10. 10.2 10.2 10.4 10.4 	Conducted Output Power Measurements	 18 19 19 20 22 23 23 24 25
 9. 9.1. 9.2. 9.3. 10. 10.2 10.2 10.2 10.4 11. 12. 	Conducted Output Power Measurements	 18 19 19 20 22 23 23 24 25 26
9. 9.1. 9.2. 9.3. 10. 10.2 10.2 10.2 10.2 10.2 10.2 10.2	Conducted Output Power Measurements	 18 19 19 20 22 23 23 24 25 26 26
 9. 9.1. 9.2. 9.3. 10. 10.2 10.2 10.4 11. 12. 12.2 Appen 	Conducted Output Power Measurements	 18 19 19 20 22 23 23 24 25 26 26 27
 9. 9.1. 9.2. 9.3. 10. 10.2 10	Conducted Output Power Measurements	 18 19 19 20 22 23 23 24 25 26 26 27 27

C_15K20822-S1 SAR System Check Plots	. 27
D_15K20822-S1 SAR Tissue Ingredients	. 27
E_15K20822-S1 SAR Probe Cal. Certificates	. 27
F_15K20822-S1 SAR Dipole Cal. Certificates	. 27

1. Attestation of Test Results

Applicant Name		SAMSUNG ELECTRONICS CO.,LTD.				
FCC ID		A3LSMG361H				
Model Name		SM-G361H/DS and SM-G361H				
Applicable Standards		FCC 47 CFR § 2.1093 Published RF exposure KDB procedures IEEE Std 1528-2013				
SAR Limits (W/Kg	1)					
Exposure Category			Peak spatial-ave	rage(1g of tissue)		
General population / Uncontrolled exposure			1	.6		
The Highest Repo	orted SAR (W/k	g)				
	ditiono		Equipmo	ent Class		
RF Exposure Cor	lulions	Licensed	DTS	U-NII	DSS (BT)	
Head		0.549	0.283			
Body-worn*		0.846	0.146			
Hotspot/Wi-Fi Dire	ct	0.040	0.140	_		
Simultaneous TX	Head	0.832		N/A	N/A	
	Body-worn*	0.992				
	Hotspot/ Wi-Fi Direct					
		separation distance is performed at a separa			hotspot RF	
Date Tested		5/14/2015 to 5/18/2015				
Test Results		Pass				
III Koroo Itd tor	ted the above	aquinment in accorde	nee with the require		abovo standarda	
All indications of F observations of te informational purp compliance with th Note: The results operation as desc Korea, Ltd. and all by UL Korea, Ltd. claim product cert	Pass/Fail in this st results. Meas oses only. The requirements documented in ribed herein. Th revisions are c will constitute fi fication, approv	equipment in accordant report are opinions ex- surement Uncertaintie test results show that is as documented in the this report apply only his document may not duly noted in the revisi raud and shall nullify t yal, or endorsement by	spressed by UL Kore s were not taken int the equipment tested is report. to the tested sample be altered or revised ons section. Any al- he document. This	ea, Ltd. based on int o account and are p ed is capable of dem e, under the conditio d in any way unless teration of this docur report must not be u	erpretations and/or ublished for onstrating ns and modes of done so by UL nent not carried ou sed by the client to	
All indications of F observations of te informational purp compliance with th Note: The results operation as desc Korea, Ltd. and all by UL Korea, Ltd.	Pass/Fail in this st results. Meas oses only. The ne requirements documented in ribed herein. Th revisions are of will constitute fur- fication, approv- rernment.	report are opinions ex surement Uncertaintie test results show that s as documented in th this report apply only his document may not duly noted in the revisi raud and shall nullify t	spressed by UL Kore s were not taken int the equipment tested is report. to the tested sample be altered or revised ons section. Any al- he document. This	ea, Ltd. based on int o account and are p ed is capable of dem e, under the conditio d in any way unless teration of this docur report must not be u	erpretations and/or ublished for onstrating ns and modes of done so by UL nent not carried ou sed by the client to	
All indications of F observations of te informational purp compliance with th Note: The results operation as desc Korea, Ltd. and all by UL Korea, Ltd. claim product certi agency of any gov	Pass/Fail in this st results. Meas oses only. The ne requirements documented in ribed herein. Th revisions are of will constitute fur- fication, approv- rernment.	report are opinions ex surement Uncertaintie test results show that s as documented in th this report apply only his document may not duly noted in the revisi raud and shall nullify t	kpressed by UL Kore s were not taken int the equipment tested is report. to the tested sample be altered or revised ons section. Any al- he document. This r IAS, any agency of	ea, Ltd. based on int o account and are p ed is capable of dem e, under the conditio d in any way unless teration of this docur report must not be u	erpretations and/or ublished for onstrating ns and modes of done so by UL nent not carried ou sed by the client to	
All indications of F observations of te informational purp compliance with th Note: The results operation as desc Korea, Ltd. and all by UL Korea, Ltd. claim product certi agency of any gov	Pass/Fail in this st results. Meas oses only. The ne requirements documented in ribed herein. Th revisions are of will constitute fur- fication, approv- rernment.	report are opinions ex surement Uncertaintie test results show that s as documented in th this report apply only his document may not duly noted in the revisi raud and shall nullify t	kpressed by UL Kore s were not taken int the equipment tested is report. to the tested sample be altered or revised ons section. Any al- he document. This r IAS, any agency of	ea, Ltd. based on int o account and are p ed is capable of dem e, under the conditio d in any way unless teration of this docur report must not be u	erpretations and/or ublished for onstrating ns and modes of done so by UL nent not carried ou sed by the client to	
All indications of F observations of te informational purp compliance with th Note: The results operation as desc Korea, Ltd. and all by UL Korea, Ltd. claim product certi agency of any gov Approved & Relea	Pass/Fail in this st results. Meas oses only. The ne requirements documented in ribed herein. The revisions are c will constitute fu fication, approv- rernment. sed By:	report are opinions ex surement Uncertaintie test results show that s as documented in th this report apply only his document may not duly noted in the revisi raud and shall nullify t	Prepared By:	ea, Ltd. based on int o account and are p ed is capable of dem e, under the conditio d in any way unless teration of this docur report must not be u	erpretations and/or ublished for onstrating ns and modes of done so by UL nent not carried ou sed by the client to	

2. Test Specification, Methods and Procedures

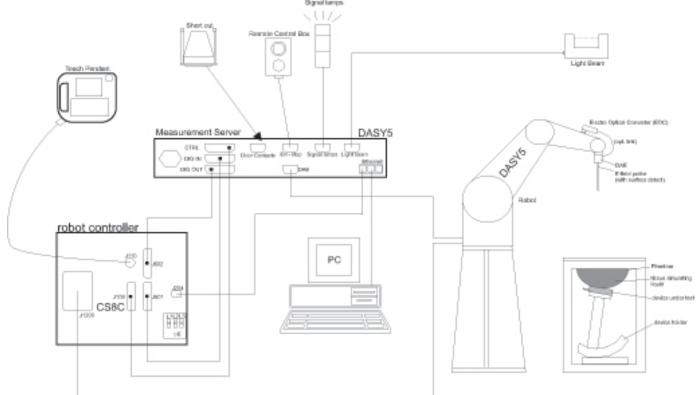
The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure <u>KDB</u> procedures:

- o 248227 D01 802.11 Wi-Fi SAR v02
- o 447498 D01 General RF Exposure Guidance v05r02
- 447498 D03 Supplement C Cross-Reference v01
- 648474 D04 Handset SAR v01r02
- o 690783 D01 SAR Listings on Grants v01r03
- o 865664 D01 SAR measurement 100 MHz to 6 GHz v01r03
- 865664 D02 RF Exposure Reporting v01r01
- o 941225 D01 3G SAR Procedures v03
- 941225 D06 Hotspot Mode v02

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at

Suwon
SAR 1 Room
SAR 2 Room
SAR 3 Room


UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637.

The full scope of accreditation can be viewed at http://www.iasonline.org/PDF/TL/TL-637.pdf.

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

Page 7 of 27

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	\leq 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$^{1/2}\cdot\delta\cdot\ln(2)\pm0.5~mm$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^\circ\pm1^\circ$	
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Page 8 of 27

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

			> 3 GHz
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$
uniform grid: $\Delta z_{Zoom}(n)$		\leq 5 mm	$3-4$ GHz: ≤ 4 mm $4-5$ GHz: ≤ 3 mm $5-6$ GHz: ≤ 2 mm
graded grid	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz:} \le 3 \text{ mm}$ $4 - 5 \text{ GHz:} \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$
	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$	
x, y, z		\geq 30 mm	$3 - 4 \text{ GHz}: \ge 28 \text{ mm}$ $4 - 5 \text{ GHz}: \ge 25 \text{ mm}$ $5 - 6 \text{ GHz}: \ge 22 \text{ mm}$
	uniform graded grid	uniform grid: $\Delta z_{Zoom}(n)$ graded grid $\Delta z_{Zoom}(1)$: between 1st two points closest to phantom surface $\Delta z_{Zoom}(n>1)$: between subsequent points	uniform grid: $\Delta z_{Zoom}(n)$ $\leq 5 \text{ mm}$ graded grid $\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface $\leq 4 \text{ mm}$ $\Delta z_{Zoom}(n>1)$: between subsequent points $\leq 1.5 \cdot \Delta z$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based *1-g SAR estimation* procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

Page 9 of 27

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Dielectric	Property	Measurements
DICICOLIIO	TTOPCIL	measurements

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Network Analyzer	Agilent	E5071C	MY46522054	9-23-2015
Dielectronic Probe kit	SPEAG	DAK-3.5	1196	8-5-2015
Dielectronic Probe kit	SPEAG	DAK-3.5 Short	SM DAK 200 BA	N/A
Thermometer	LKM	DTM3000	3424	11-13-2015
System Check				
Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
MXG Analog Signal Generator	Agilent	N5181A	MY50145882	9-23-2015
Power Sensor	Agilent	U2000A	MY54260010	9-23-2015
Power Sensor	Agilent	U2000A	MY54260007	9-23-2015
Power Amplifier	EXODUS	1410025-AMP2027-10003	10003	11-7-2015
Directional Coupler	Agilent	772D	MY52180193	9-22-2015
Directional Coupler	Agilent	778D	MY52180432	9-22-2015
Low Pass Filter	MICROLAB	LA-15N	03943	11-4-2015
Low Pass Filter	FILTRON	L14012FL	1410003S	11-4-2015
Low Pass Filter	MICROLAB	LA-60N	03942	11-5-2015
Attenuator	Agilent	8491B/003	MY39269292	9-22-2015
Attenuator	Agilent	8491B/010	MY39269315	9-22-2015
Attenuator	Agilent	8491B/020	MY39269298	9-22-2015
E-Field Probe (SAR 2)	SPEAG	EX3DV4	7313	8-27-2015
E-Field Probe (SAR 3)	SPEAG	EX3DV4	7314	8-27-2015
E-Field Probe (SAR 3)	SPEAG	EX3DV4	7323	12-5-2015
Data Acquisition Electronics (SAR 2)	SPEAG	DAE4	1447	8-25-2015
Data Acquisition Electronics (SAR 3)	SPEAG	DAE4	1446	8-27-2015
System Validation Dipole	SPEAG	D835V2	4d174	8-13-2015
System Validation Dipole	SPEAG	D1900V2	5d190	8-12-2015
System Validation Dipole	SPEAG	D1900V2	5d199	2-6-2016
System Validation Dipole	SPEAG	D2450V2	939	8-11-2015
Thermometer (SAR 2)	Lutron	MHB-382SD	AH.50215	11-18-2015
Thermometer (SAR 3)	Lutron	MHB-382SD	AH.50213	11-18-2015

<u>Others</u>

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Base Station Simulator	R & S	CMW500	150313	8-13-2015
Base Station Simulator	R & S	CMW500	150314	8-13-2015

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

6. Device Under Test (DUT) Information

6.1. DUT Description

Device Dimension	Overall (Length x Width): 130 mm x 68 mm
	Overall Diagonal: 140 mm
	Display Diagonal: 115.7 mm
Back Cover	⊠ Normal Battery Cover
	Normal Battery Cover with NFC
	Wireless Charger Battery Cover
	Wireless Charger Battery Cover with NFC
	□ The rechargeable battery is not user accessible.
Battery Options	⊠ Standard – Lithium-ion battery, Rating 3.85Vdc, 7.70Wh
	Extended (large capacity)
	□ The rechargeable battery is not user accessible.
Accessory	Headset
Wireless Router (Hotspot)	Wi-Fi Hotspot mode permits the device to share its cellular data connection with other Wi-Fi-enabled devices.
	⊠ Mobile Hotspot (Wi-Fi 2.4 GHz)
	Mobile Hotspot (Wi-Fi 5 GHz)
Wi-Fi Direct	Wi-Fi Direct enabled devices transfer data directly between each other
	⊠ Wi-Fi Direct (Wi-Fi 2.4 GHz)
	UWi-Fi Direct (Wi-Fi 5 GHz)

6.2. Wireless Technologies

Wireless technologies	Frequency bands	Operating mode	_	Duty Cycle used for SAR testing	
GSM	850	Voice (GMSK)	GPRS Multi-Slot Class:	GSM Voice: 12.5%	
	1900	GPRS (GMSK)	🗆 Class 8 - 1 Up, 4 Down	(E)GPRS: 1 Slot: 12.5%	
		EGPRS (Rx Only)	🗆 Class 10 - 2 Up, 4 Down	2 Slots: 25%	
			🛛 Class 12 - 4 Up, 4 Down	3 Slots: 37.5%	
			🗆 Class 33 - 4 Up, 5 Down	4 Slots: 50%	
	Does this device supp	ort DTM (Dual Transfer Mod	de)? □ Yes ⊠ No		
Wi-Fi	2.4 GHz	802.11b		100%	
		802.11g			
		802.11n (HT20)			
Bluetooth	2.4 GHz	Version 4.1 LE		N/A	

6.3. Nominal and Maximum Output Power

KDB 447498 sec.4.1.(3) at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit

RF Air interface	Mode	Target	Max. tune-up tolerance limit
	Voice (1 slot)	32.5	33.0
	GPRS 1 slot	32.5	33.0
GSM850	GPRS 2 slots	30.0	30.5
	GPRS 3 slots	28.0	28.5
	GPRS 4 slots	26.0	26.5
	Voice (1 slot)	29.5	30.0
	GPRS 1 slot	29.5	30.0
GSM1900	GPRS 2 slots	28.0	28.5
	GPRS 3 slots	26.0	26.5
	GPRS 4 slots	24.0	24.5
Upper limit (dB):	-1.5 ~ 0.5	Max. F	RF Output Pow er (dBm)
RF Air interface	Mode	Target	Max. tune-up tolerance limit
	802.11b	17.5	18.0
WiFi 2.4 GHz	802.11g	15.0	15.5
	802.11n HT20		14.0
Blue	etooth	10.5	11.0
Bluet	ooth LE	9.0	9.5

7. RF Exposure Conditions (Test Configurations)

Refer to "SAR Photos and Ant locations" Appendix for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

Wireless	RF Exposure	DUT-to-User	Test	Antenna-to-	SAR	Note
technologies	Conditions	Separation	Position	edge/surface	Required	Note
			Left Touch	N/A	Yes	
	Head	0 mm	Left Tilt (15°)	N/A	Yes	
	Tieau	Unin	Right Touch	N/A	Yes	
			Right Tilt (15°)	N/A	Yes	
	Body	15 mm	Rear	N/A	Yes	2
	Body	19 1111	Front	N/A	Yes	2
WWAN			Rear	< 25 mm	Yes	
			Front	< 25 mm	Yes	
	Llatanat	10 mm	Edge 1 (Top)	> 25 mm	No	1
	Hotspot	10 mm	Edge 2 (Right)	< 25 mm	Yes	
			Edge 3 (Bottom)	< 25 mm	Yes	
			Edge 4 (Left)	< 25 mm	Yes	
	Head		Left Touch	N/A	Yes	
		0 mm	Left Tilt (15°)	N/A	Yes	
	riedu	0 mm	Right Touch	N/A	Yes	
			Right Tilt (15°)	N/A	Yes	
	Body	15 mm	Rear	N/A	Yes	2
	body	13 1111	Front	N/A	Yes	2
WLAN			Rear	< 25 mm	Yes	
			Front	< 25 mm	Yes	
	Hotspot /	10 mm	Edge 1 (Top)	< 25 mm	Yes	
	Wi-Fi Direct		Edge 2 (Right)	< 25 mm	Yes	
			Edge 3 (Bottom)	> 25 mm	No	1
			Edge 4 (Left)	> 25 mm	No	1

Notes:

1. SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hot Spot SAR.

2. The Body-worn minimum separation distance is 15 mm. To cover both body-worn and hotspot RF exposure conditions testing was performed at a separation distance of 10 mm.

Page 13 of 27

8. Dielectric Property Measurements & System Check

8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)	H	lead	Bo	dy
raiget requeitcy (Mirz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5000	36.2	4.45	49.3	5.07
5100	36.1	4.55	49.1	5.18
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5400	35.8	4.86	48.7	5.53
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5700	35.4	5.17	48.3	5.88
5800	35.3	5.27	48.2	6.00

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Page 14 of 27

Dielectric Property Measurements Results:

SAR 2 Room

Date	Freq. (MHz)		Liq	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Head 835	e'	42.0200	Relative Permittivity (c _r):	42.02	41.50	1.25	5
	Tieau 655	e"	19.0000	Conductivity (σ):	0.88	0.90	-1.98	5
5-14-2015	Head 820	e'	42.1700	Relative Permittivity (ε_r):	42.17	41.60	1.36	5
5-14-2015	Head 620	e"	19.0200	Conductivity (σ):	0.87	0.90	-3.48	5
	Head 850	e'	41.8600	Relative Permittivity (c _r):	41.86	41.50	0.87	5
	Tieau 650	e"	18.9500	Conductivity (σ):	0.90	0.92	-2.12	5
	Body 1900	e'	52.0300	Relative Permittivity (ε_r):	52.03	53.30	1.25 -1.98 1.36 -3.48 0.87 -2.12 -2.38 4.12 -2.12 1.31 -2.44 4.66 -3.99 -2.07 -3.88 -3.39 -4.15 -2.38 -3.40 2.85 -2.88 -0.22	5
	BOUY 1900	e"	14.9800	Conductivity (σ):	1.58	1.52	4.12	5
5 15 2015	5-15-2015 Body 1850	e'	52.1700	Relative Permittivity (c _r):	52.17	53.30	-2.12	5
5-15-2015		e"	14.9700	Conductivity (σ):	1.54	1.52	1.31	5
Rody 1010	Body 1010	e'	52.0000	Relative Permittivity (c _r):	52.00	53.30	-2.44	5
	Body 1910	e"	14.9800	Conductivity (o):	1.59	1.52	4.66	5
	Rody 925	e'	53.0000	Relative Permittivity (c _r):	53.00	55.20	-3.99	5
	Body 835	e"	20.4600	Conductivity (o):	0.95	0.97	-2.07	5
5 17 2015	Rody 820	e'	53.1300	Relative Permittivity (ε_r):	53.13	55.28	-3.88	5
5-17-2015	Body 1910	e"	20.5200	Conductivity (o):	0.94	0.97	-3.39	5
	Rody 950	e'	52.8700	Relative Permittivity (ε_r):	52.87	55.16	-4.15	5
	BOUY 850	e"	20.3900	Conductivity (σ):	0.96	0.99	-2.38	5
	Head 1900	e'	38.6400	Relative Permittivity (c _r):	38.64	40.00	-3.40	5
	Tieau 1900	e"	13.6300	Conductivity (σ):	1.44	1.40	2.85	5
5-17-2015	Head 1850	e'	38.8500	Relative Permittivity (ε_r):	38.85	40.00	-2.88	5
5-17-2015		e"	13.5800	Conductivity (o):	1.40	1.40	-0.22	5
	Head 1910	e'	38.6000	Relative Permittivity (ε_r):	38.60	40.00	-3.50	5
	fieau 1910	e"	13.6400	Conductivity (o):	1.45	1.40	3.47	5

SAR 3 Room

Date	Freq. (MHz)		Liq	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Body 2450	e'	51.6100	Relative Permittivity (ε_r):	51.61	52.70	-2.07	5
	D00y 2430	e"	15.0100	Conductivity (σ):	2.04	1.95	4.86	5
5 16 2015	5-16-2015 Body 2410	e'	51.6900	Relative Permittivity (ε_r):	51.69	52.76	-2.03	5
5-10-2015		e"	14.9300	Conductivity (σ):	2.00	1.91	4.89	5
Body 2475	e'	51.5500	Relative Permittivity (ε_r):	51.55	52.67	-2.12	5	
	Douy 2415	e"	15.0600	Conductivity (σ):	2.07	1.99	4.40	5
	Head 2450	e'	38.5100	Relative Permittivity (c _r):	38.51	39.20	-1.76	5
	Tieau 2430	e"	13.7900	Conductivity (σ):	1.88	1.80	4.37	5
5 16 2015	Hood 2410	e'	38.6200	Relative Permittivity (ε_r):	38.62	39.28	-1.68	5
5-10-2015	Tieau 2410	e"	13.7200	Conductivity (σ):	1.84	1.76	4.44	5
	Head 2475	e'	38.4100	Relative Permittivity (ε_r):	38.41	39.17	-1.94	5
	5-16-2015 Head 2410 Head 2475	e"	13.8300	Conductivity (σ):	1.90	1.83	4.17	5

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

Reference Target SAR Values

The reference SAR values can be obtained from the calibration certificate of system validation dipoles

System Dipole	Serial No.	Cal. Date		Target SAR Values (W/kg)			
System Dipole	Senar No.	Cal. Date	Freq. (MHz)	1g/10g	Head	Body	
D835V2	4d174	8-13-2014	835	1g	9.32	9.62	
D033V2	635VZ 40174 8-1		635	10g	6.09	6.37	
D1000\/2	D1900V2 5d190 8-12-2014	9 12 2014	2-2014 1900		40.2	40.4	
D1900v2		0-12-2014	1900	10g	21.0	21.3	
D1900V2	5d199	2-6-2015	1900	1g	41	40.6	
D1900v2	50199	2-0-2015	1900	10g	21.4	21.6	
D2450V2	020	000 0.44.0044		1g	52.1	51.4	
D2430V2	939	8-11-2014	2450	10g	24.2	24	

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

SAR 2 Room

	System	Dipole	те	T.S.		d Results	Torget	Delte	Diet
Date Tested	Туре	Serial #	Liquid		Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Plot No.
5-14-2015	D835V2	4d174	Head	1g	0.97	9.73	9.32	4.40	
5-14-2015	D035V2	40174	Tieau	10g	0.64	6.39	6.09	4.93	
5-15-2015	D1900V2	5d199	Body	1g	4.12	41.20	40.6	1.48	
5-15-2015	D1900V2	50199	Body	10g	2.11	21.10	21.60	-2.31	
5-17-2015	D835V2	4d174	Body	1g	0.96	9.61	9.62	-0.10	1, 2
5-17-2015	D033V2	40174	Body	10g	0.63	6.33	6.37	-0.63	1, 2
5-17-2015	D1900V2	5d199	Head	1g	4.07	40.70	41.00	-0.73	3, 4
5-17-2015	B1300V2	50199	neau	10g	2.08	20.80	21.40	-2.80	5,4

SAR 3 Room

	System Dipole		T.S. Liquid		Measured	Measured Results		Dalta	Plot	
Date Tested Type		Serial #			Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	No.	
5 16 2015	D2450\/2	939	020	Body	1g	5.44	54.40	51.40	5.84	
5-10-2015	5-16-2015 D2450V2		Bouy	10g	2.49	24.90	24.00	3.75		
5-16-2015	D2450V2	939	Head	1g	5.43	54.30	52.10	4.22	5.6	
5-10-2015	D2430V2	D2450V2 939		10g	2.48	24.80	24.20	2.48	5,6	

9. Conducted Output Power Measurements

9.1. GSM

Per KDB 941225 D01 3G SAR Procedures:

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested.

GSM850 Measured Results

		Coding Scheme	Time		Freq.	Max.	. Pwr
Band	Mode		Slots	Ch No.	(MHz)	Burst (dBm)	Frame (dBm)
	GSM			128	824.2	32.7	23.6
	(Voice)	CS1	1	190	836.6	32.6	23.5
	(10100)			251	848.8	32.7	23.6
				128	824.2	32.7	23.6
			1	190	836.6	32.6	23.5
				251	848.8	32.7	23.6
			2	128	824.2	30.1	24.1
850				190	836.6	30.1	24.1
	GPRS	CS1		251	848.8	30.2	24.2
	(GMSK)	031		128	824.2	28.1	23.8
			3	190	836.6	28.1	23.8
				251	848.8	28.1	23.9
				128	824.2	26.1	23.1
			4	190	836.6	26.1	23.0
				251	848.8	26.1	23.1

EGPRS(8PSK) is Rx only

Notes:

The worst-case configuration and mode for SAR testing is determined to be as follows:

- Head & Body-worn: GMSK Voice Mode ٠
- Hotspot mode: GMSK (GPRS) mode with 2 time slots based on the output power measurements above. •

		Coding Scheme	Time		Freq.	Max.	Pwr
Band	Mode		Slots	Ch No.	(MHz)	Burst (dBm)	Frame (dBm)
	COM			512	1850.2	29.2	20.2
	GSM (Voice)	CS1	1	661	1880.0	29.1	20.1
	(1000)			810	1909.8	29.1	20.1
				512	1850.2	29.2	20.2
			1	661	1880.0	29.1	20.1
				810	1909.8	29.1	20.1
			2	512	1850.2	28.1	22.1
1900				661	1880.0	28.0	22.0
	GPRS	CS1		810	1909.8	27.7	21.7
	(GMSK)	031		512	1850.2	26.4	22.2
			3	661	1880.0	26.2	22.0
				810	1909.8	25.9	21.7
				512	1850.2	24.5	21.4
			4	661	1880.0	24.2	21.2
				810	1909.8	23.9	20.9

GSM1900 Measured Results

EGPRS(8PSK) is Rx only

Notes:

The worst-case configuration and mode for SAR testing is determined to be as follows:

- ٠ Head & Body-worn: GMSK Voice Mode
- Hotspot mode: GMSK (GPRS) mode with 3 time slots based on the output power measurements above. •

9.2. Wi-Fi 2.4GHz (DTS Band)

Measured Results

Band (GHz)	Mode	Data Rate	Ch #	Freq. (MHz)	Avg Pwr (dBm)	Max Output Power (dBm)	SAR Test (Yes/No)	Note(s)
			1	2412	17.1			
	802.11b	1 Mbps	6	2437	17.1	18	Yes	
			11	2462	17.1			
			1	2412		15.5	No	
2.4	802.11g	6 Mbps	6	2437	Not PWR Meas. require			1
			11	2462	Medo. Tequire			
	802.11n (HT20) 6.5 M		1	2412				
		6.5 Mbps	6	2437	Not PWR Meas. require	14.0	No	1
			11	2462	Meas. require			

Note(s):

1. Output Power and SAR is not required for 802.11g/n HT20 channels when the highest <u>reported</u> SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

9.3. Bluetooth

Maximum tune-up tolerance limit is 11.0 dBm from the rated nominal maximum output power. This power level qualifies for exclusion of SAR testing.

Page 19 of 27

10. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 648474 D04 Handset SAR:

With headset attached, when the reported SAR for body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

KDB 941225 D01 SAR test for 3G devices:

When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/4$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode

KDB 248227 D01 SAR meas for 802.11 v02:

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the *initial test position(s)* by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The *initial test position(s)* is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the *reported* SAR for the *initial test position* is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- > 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the <u>initial test position</u> to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the <u>reported</u> SAR is ≤ 0.8 W/kg or all required test positions are tested.
 - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the *initial test position* and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤ 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR.

Page 20 of 27

To determine the *initial test position*, Area Scans were performed to determine the position with the *Maximum Value of SAR* (*measured*). The position that produced the highest *Maximum Value of SAR* is considered the worst case position; thus used as the *initial test position*.

Page 21 of 27

10.1. GSM850

RF Exposure		Dist.			Freq.	Power	(dBm)	1-g SAR (W/kg)		Plot
Conditions	Mode	(mm)	Test Position	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.
			Left Touch	190	836.6	33.0	32.6	0.147	0.161	
Head	Voice	0	Left Tilt	190	836.6	33.0	32.6	0.087	0.095	
Tieau	VOICE	0	Right Touch	190	836.6	33.0	32.6	0.141	0.155	
			Right Tilt	190	836.6	33.0	32.6	0.121	0.133	
			Left Touch	190	836.6	30.5	30.1	0.301	0.330	1
Head	GPRS 2 Slots	0	Left Tilt	190	836.6	30.5	30.1	0.173	0.190	
VoIP			Right Touch	190	836.6	30.5	30.1	0.290	0.318	
			Right Tilt	190	836.6	30.5	30.1	0.252	0.276	
Body-worn	Voice	10	Rear	190	836.6	33.0	32.6	0.683	0.749	
Body-wom	Voice	10	Front	190	836.6	33.0	32.6	0.426	0.467	
				128	824.2	30.5	30.1	0.757	0.830	
Body-worn(VoIP) &			Rear	190	836.6	30.5	30.1	0.772	0.846	2
Hotspot	0000			251	848.8	30.5	30.2	0.779	0.835	
	GPRS 2 Slots	10	Front	190	836.6	30.5	30.1	0.538	0.590	
	2 01013		Edge 2	190	836.6	30.5	30.1	0.601	0.659	
Hotspot			Edge 3	190	836.6	30.5	30.1	0.065	0.071	
			Edge 4	190	836.6	30.5	30.1	0.611	0.670	

10.2. GSM1900

RF Exposure		Dist.			Freq.	Power	(dBm)	1-g SAR (W/kg)		Plot			
Conditions	Mode	(mm)	Test Position	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.			
			Left Touch	661	1880.0	30.0	29.1	0.385	0.474				
Head	Voice	0	Left Tilt	661	1880.0	30.0	29.1	0.143	0.176				
Tieau	VOICE	0	Right Touch	661	1880.0	30.0	29.1	0.214	0.263				
			Right Tilt	661	1880.0	30.0	29.1	0.126	0.155				
	GPRS					Left Touch	661	1880.0	26.5	26.2	0.512	0.549	3
Head		0	Left Tilt	661	1880.0	26.5	26.2	0.192	0.206				
VoIP	3 Slots	Ŭ	Right Touch	661	1880.0	26.5	26.2	0.235	0.252				
			Right Tilt	661	1880.0	26.5	26.2	0.170	0.182				
Body-worn	Voice	10	Rear	661	1880.0	30.0	29.1	0.458	0.563				
Body-wom	Voice	10	Front	661	1880.0	30.0	29.1	0.357	0.439				
Body-worn(VoIP) &			Rear	661	1880.0	26.5	26.2	0.664	0.711	4			
Hotspot	CDDC		Front	661	1880.0	26.5	26.2	0.514	0.551				
	GPRS 3 Slots	10	Edge 2	661	1880.0	26.5	26.2	0.108	0.116				
Hotspot			Edge 3	661	1880.0	26.5	26.2	0.146	0.156				
			Edge 4	661	1880.0	26.5	26.2	0.393	0.421				

10.3. Wi-Fi (DTS Band)

Frequency RF Expos		RF Exposure	Dist.		Freq.		Area Scan	Power (dBm)		1-g SAR (W/kg)			Plot				
Band	Mode	Conditions	(mm)	Test Position	Ch #.	(MHz)	Max. SAR (W/kg)	Tune-up limit	Meas.	Meas.	Scaled	Notes	No.				
				Left Touch	6	2437.0	0.299	18.0	17.1	0.230	0.283	1	5				
			0	Left Tilt	6	2437.0	0.311	18.0	17.1	0.215	0.265						
	He	Head	0	Right Touch	6	2437.0	0.200										
2.4GHz	802.11b			Right Tilt	6	2437.0	0.220										
2.4002	1 Mbps			Rear	6	2437.0	0.158	18.0	17.1	0.119	0.146	1	6				
		Body-worn & Hotspot &	10	Front	6	2437.0	0.070										
		Wi-Fi Direct	10	10	10	10	10	Edge 1	6	2437.0	0.109						
				Edge 2	6	2437.0	0.028										

Note(s):

Highest <u>reported</u> SAR is ≤ 0.4 W/kg. Therefore, further SAR measurements within this exposure condition are not required.
 Highest <u>reported</u> SAR is > 0.4 W/kg. Due to the highest <u>reported</u> SAR for this test position, other test positions in Head

exposure condition were evaluated until a SAR ≤ 0.8 W/kg was reported.

3. Testing for a second channel was required because the <u>reported SAR</u> for this test position was >0.8 W/kg.

4. Additional testing required in order satisfying FCC simultaneous transmission limit criteria.

10.4. Bluetooth

Standalone SAR Test Exclusion Considerations & Estimated SAR

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[$\sqrt{f}(GHz)$] \leq 3.0, for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where

- $f_{(GHz)}$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

- (max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[√f_(GH2)/x] W/kg for test separation distances ≤ 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
- 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

Max. tune-up	tolerance limit	Min. test separation	Frequency (GHz)	SAR test exclusion	Test Configuration	Estimated 1-g SAR
(dBm)	(mW)	distance (mm)	x <i>y</i>	Result*	Configuration	(W/kg)
11.0	13	10	2.480	2.0	Rear/Front	0.273

Body-worn Accessory Exposure Conditions

Conclusion:

*: The computed value is < 3; therefore, Bluetooth qualifies for Standalone SAR test exclusion.

11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Frequency Band (MHz)	Air Interface	RF Exposure Conditions	Test Position	Repeated SAR (Yes/No)	Highest Measured SAR (W/kg)	Repeated Measured SAR (W/kg)	Largest to Smallest SAR Ratio
850	GSM 850	Body & Hotspot	Rear	No	0.779	N/A	N/A
1900	GSM 1900	Body & Hotspot	Rear	No	0.664	N/A	N/A
2400	Wi-Fi 802.11b/g/n	Head	Left Touch	No	0.23	N/A	N/A

Note(s):

Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.

12. Simultaneous Transmission SAR Analysis

KDB 447498 D01 General RF Exposure Guidance introduces a new formula for calculating the SAR to Peak Location Ratio (SPLSR) between pairs of simultaneously transmitting antennas:

$$SPLSR = (SAR_1 + SAR_2)^{1.5} / Ri$$

Where:

SAR¹ is the highest measured or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition

SAR₂ is the highest measured or estimated SAR for the second of a pair of simultaneous transmitting antennas, in the same test operating mode and exposure condition as the first

Ri is the separation distance between the pair of simultaneous transmitting antennas. When the SAR is measured, for both antennas in the pair, it is determined by the actual x, y and z coordinates in the 1-g SAR for each SAR peak location, based on the extrapolated and interpolated result in the zoom scan measurement, using the formula of $[(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2]$

In order for a pair of simultaneous transmitting antennas with the sum of 1-g SAR > 1.6 W/kg to qualify for exemption from Simultaneous Transmission SAR measurements, it has to satisfy the condition of:

RF Exposure Condition	ltem		Capable Transmit Configurations							
Head	1	GSM(Voice)	+	DTS						
	2	GSM(GPRS)	+	DTS						
Body-w orn	3	GSM(Voice)	+	DTS						
	4	GSM(Voice)	+	BT						
	5	GSM(GPRS)	+	DTS						
	6	GSM(GPRS)	+	BT						
Hotspot & Wi-Fi Direct	7	GSM(GPRS)	+	DTS						
Notes:										
1. DTS supports Hotsp	ot and \	Vi-Fi Direct								
2. GPRS support Hotsp	oot.									
3. VolP is supported in	GPRS.									
4. DTS Radio cannot tr	ansmit s	imultaneously with	Bluetooth	Radio.						

Simultaneous Transmission Condition

12.1. Sum of the SAR for GSM 850 & Wi-Fi & BT

RF Exposure	Test Position	1	2	3	① + ② WWAN + DTS		① + ③ WWAN + BT	
conditions	Test i Osition	WWAN	DTS	BT	∑ 1-g SAR (mW/g)	SPLSR (Yes/ No)	∑ 1-g SAR (mW/g)	SPLSR (Yes/No)
	Left Touch	0.330	0.283		0.613	No		
Head	Left Tilt	0.190	0.283		0.473	No		
Tiead	Right Touch	0.318	0.283		0.601	No		
	Right Tilt	0.276	0.283		0.559	No		
Body-worn	Rear	0.846	0.146	0.273	0.992	No	1.119	No
& Hotspot	Front	0.590	0.146	0.273	0.736	No	0.863	No
	Edge 1		0.146					
Hotspot	Edge 2	0.659	0.146		0.805	No		
Totspot	Edge 3	0.071	0.146		0.217	No		
	Edge 4	0.670	0.146		0.816	No		

12.2. Sum of the SAR for GSM 1900 & Wi-Fi & BT

RF Exposure	Test Position	1	2	3	① + ② WWAN + DTS		① + ③ WWAN + BT	
conditions	Test i Osition	WWAN	DTS	BT	∑ 1-g SAR (mW/g)	SPLSR (Yes/ No)	∑ 1-g SAR (mW/g)	SPLSR (Y es/ No)
	Left Touch	0.549	0.283		0.832	No		
Head	Left Tilt	0.206	0.283		0.489	No		
Tread	Right Touch	0.263	0.283		0.546	No		
	Right Tilt	0.182	0.283		0.465	No		
Body-worn	Rear	0.711	0.146	0.273	0.857	No	0.984	No
& Hotspot	Front	0.551	0.146	0.273	0.697	No	0.824	No
	Edge 1		0.146					
Hotspot	Edge 2	0.116	0.146		0.262	No		
Totspor	Edge 3	0.156	0.146		0.302	No		
	Edge 4	0.421	0.146		0.567	No		

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

Appendixes

Refer to separated files for the following appendixes.

- A_15K20822-S1 SAR Photos & Ant. Locations
- B_15K20822-S1 SAR Highest Test Plots
- C_15K20822-S1 SAR System Check Plots
- D_15K20822-S1 SAR Tissue Ingredients
- E_15K20822-S1 SAR Probe Cal. Certificates
- F_15K20822-S1 SAR Dipole Cal. Certificates

END OF REPORT